8^2+12^2=c^2

Simple and best practice solution for 8^2+12^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^2+12^2=c^2 equation:



8^2+12^2=c^2
We move all terms to the left:
8^2+12^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+208=0
a = -1; b = 0; c = +208;
Δ = b2-4ac
Δ = 02-4·(-1)·208
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{13}}{2*-1}=\frac{0-8\sqrt{13}}{-2} =-\frac{8\sqrt{13}}{-2} =-\frac{4\sqrt{13}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{13}}{2*-1}=\frac{0+8\sqrt{13}}{-2} =\frac{8\sqrt{13}}{-2} =\frac{4\sqrt{13}}{-1} $

See similar equations:

| k+k+k+4=44 | | 7(x-3)+3(4-x)=-18 | | 6y=7y-18 | | A(8x+7)=5x+3.5 | | 1/4x+15/8=7/38 | | 5(x-7)=2/3x+15x= | | 5(x-7)=2/3x+15 | | 6x+36=5x | | 0=-16+80t+20 | | 8.2x+4-4.2x=8 | | 0=5x2+12x+8 | | 2(9x-1)=99-21 | | 1.2*(x*x*x)=3.0 | | x*x*x=2.5 | | 0.6(x+2)=0.55(2x+3 | | (6x+20=) | | -3m-m=4/7 | | 5(4)^x-3=13 | | 2+2x+6x=90 | | -x2-7=0 | | 0.2(x+350)=5000 | | 4.7x=3.5x+7.2 | | 3x+5=3×+5 | | 5x+3=3×+15 | | 31=6x+2x+7 | | 6x+3.12=-22 | | y=49-6y | | 4=x+2x+4 | | 30y-34y=3/20 | | 4=x+2x+2 | | -4x2-7x+2=0 | | 5x+6=-3x+2 |

Equations solver categories